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Abstract 

In this paper, a PID (Proportional, Integral, Derivative) controller retuning method is designed 

to increase its existing installed performance appropriate for a wide range of self-regulating, non-

minimum phase and integrating processes with dead time.  Improved closed-loop responses can be 

expected for processes with first- and second-order dynamics. The method developed uses 

routine closed-loop operating feedback data from an existing PID controller and estimates a 

surrogate ARX (Auto-Regressive eXogenous) parametric model with a pre-defined structure 

and process delay.  By replaying back both the white noise load disturbance (i.e., the regression 

residuals) and any setpoint perturbations, the closed-loop behavior of the PID controller is 

simulated in a brute-force grid or sample-based search with the three PID tuning parameters 

systematically incremented.  The best PID settings are selected from the simulated cases or 

scenarios which minimize the output-error variance (setpoint minus process variable) subject to 

input-move-error variance limits or bounds which constrain or suppress the movement of the 

manipulated process input or controller output.  The surrogate ARX model can be easily 

updated from any new data set regularly, or on demand, triggered by unexpected model 
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prediction performance and the PID programmatically retuned.  Actual laboratory experiments 

are given to show the effectiveness and simplicity of the PID retuning in handling processes of 

different characteristics i.e., flow, temperature, and pressure as well as simulated level or 

holdup control. 

 

Keywords: closed-loop estimation, close-loop data, sample-based search, single-loop PID 

control, digital twin, cyber-physical, smart tuning. 

 

1. Introduction 

PID controllers are the most extensively used regulatory control algorithms in industrial 

processes, particularly within the chemical process industries.  PID controllers have been 

foundational in industrial control for over seventy years (O'Dwyer, 2009; D. Chen and Seborg, 

2002)[1, 2].  They are implemented across various control systems, including distributed 

control systems (DCSs), programmable logic controllers (PLCs), and supervisory control and 

data acquisition systems (SCADAs).  Their widespread use is attributed to their simple 

structure, robustness, broad applicability, and ease of online retuning (Zhu et al., 2022; Joseph 

et al., 2022; Somefun et al., 2021)[3-5].  Over 95% of industries utilize PI/PID controllers 

(Ghoisiya et al., 2018)[6], with earlier studies indicating that 80% of industrial controllers are 

P-only/PI, while 20% employ full PID control (Luyben and Luyben, 1997)[7].  

 

The performance of PID controllers depends heavily on the proper tuning of three key 

parameters: proportional, integral, and derivative.  Initially tuned with heuristic methods like 

Ziegler-Nichols[8], these controllers have evolved to address industrial challenges such as non-

linearities and time delays Shamsuzzoha and Skogestad (2020)[2].  Despite the availability of 

various tuning rules, selecting the best method is still challenging, especially for complex 



processes with non-minimum phase behavior and dead time.  Advances in computational 

power have made optimization-based approaches, including gradient-based and derivative-free 

techniques, more viable Issa et al. (2019)[9].  Research has focused on non-gradient algorithms 

like particle swarm, as well as meta-heuristics like genetic algorithms.  While data-driven 

monitoring and automated retuning methods have emerged (Munaro et al., 2023)[10], reliable 

tuning formulas are still limited, leading to poorly tuned controllers. 

 

Modern approaches utilize model-driven optimization and adaptive techniques to fine-tune 

PID control parameters in real-time, significantly enhancing system robustness (Joseph et al., 

2022; Issa et al., 2019)[4, 9].  Looking ahead, the integration of machine learning (ML) and 

artificial intelligence (AI) into PID tuning presents immense potential.  These technologies 

promise to further improve adaptability and system performance by enabling real-time 

monitoring and automated tuning, effectively meeting the increasing industrial demands for 

greater efficiency and reliability (Coutinho et al., 2023)[11]. 

 

This paper introduces a novel retuning methodology to enhance PID controller performance 

across various industrial processes.  It utilizes a brute-force sample-based search method to 

systematically explore the parameter space and simulate closed-loop responses, closely 

mimicking real-world operations through a digital twin.  This derivative-free approach avoids 

local minima and improves tuning accuracy and reliability by optimizing PID settings using 

routine closed-loop feedback data.  The use of a digital twin further enhances the method's 

effectiveness in replicating actual process behavior. 

 

 

 



2. Literature Review 

 

For mor than seventy years, proportional-integral (PI) and proportional-integral-derivative 

(PID) controllers have been crucial in control engineering (O’Dwyer, 2009; Chen and Seborg, 

2002)[1].  Surprisingly, only in the past two decades has significant academic interest surged 

around PID controllers (Coutinho et al., 2023; Åström and Hägglund, 2006)[11, 12].  Joseph 

et al., (2022)[4] provided a comprehensive overview of classical and modern PID tuning 

strategies covering methodologies from conventional techniques to innovative approaches.  

The article emphasizes their practical applications across various domains, highlighting the 

evolution and significance of PID tuning methods in improving control system performance. 

Originally tuned using heuristic methods like Ziegler-Nichols and Cohen-Coon, PID 

controllers have faced industrial challenges, such as non-linearities and time delays, 

necessitating advancements Joseph et al., (2022)[4]. 

 

Modern approaches arose, utilizing models for precise tuning and optimization algorithms for 

automated parameter adjustment (Issa et al., 2019)[9].  Real-time adaptive techniques 

enhanced control by responding to dynamic process behaviors, while iterative methods 

employed experimental data to meet exact control objectives.  Across various sectors, such as 

chemicals and automotive industries, case studies highlighted customized tuning strategies that 

tackled specific industrial challenges, illustrating the transition from heuristic methods to 

advanced, model-driven approaches. This section highlights some of the recent publications in 

the area of PID tuning research. 

 

(O’Dwyer, 2009)[1] in his Handbook of PI and PID Controller Tuning Rules made a thorough 

collection of tuning guidelines for proportional-Integral (PI) and Proportional-Integral-



Derivative (PID) controllers, which are commonly utilized in industrial process control. 

Covering over seventy years of research from 1935 to 2005, the book categorizes and 

elaborates on various tuning methods.  It introduces a standardized notation for these rules, 

facilitating their application across diverse systems. Important topics include controller’s 

architecture, process modeling, and the performance and robustness of control loops.  

(Bombois et al., 2005)[13] also provided practical guidance on selecting the optimal method 

based on model requirement and disturbance characteristics comparing open-loop and closed-

loop methods for identifying Box-Jenkins models, focusing on estimation variance.  By 

introducing a novel variance analysis framework, the authors show that while closed-loop 

identification is generally preferred for its stability, open-loop approaches can offer 

comparable or superior variance under certain conditions.  

 

Another review article published by (Borase et al., 2021)[14]    that provides a comprehensive 

survey of PID controllers, emphasizing their central role in industrial process control due to its 

simplicity and reliability.  The review evaluates classical and modern PID tuning methods, 

highlighting their strength and limitations.  Classical techniques, such as Ziegler-Nichols (Z-

N), Cohen-Coon (C-C), are widely used for their intuitive and practical approaches, with Z-N 

offering straightforward guidelines and C-C providing improved stability margins for 

processes with time delays.  However, these methods often face challenges in systems with 

nonlinearity, long dead times, or time-varying dynamics.  To address these issues, 

optimization-based strategies have been developed, utilizing techniques like genetic 

algorithms, particle swarm optimization, and gradient-based methods.  These modern 

approaches optimize controller’s parameters by minimizing cost functions that balance 

performance metrics such as rising time, overshoot, and robustness.  While they offer enhanced 

adaptability and performance in complex systems, they are constrained by computational 



requirements and the need for accurate models.  The review underscores how these 

advancements in PID tuning continue to meet the diverse demands of modern control systems, 

solidifying PID’s relevance across a broad range of applications, traditional industries to 

advanced robotics and renewable energy systems. 

 

Xinqing Gao et al. (2017)[15] proposed a data-driven method that integrates performance 

assessment and retuning of PID controllers, eliminating the need for separate steps. By relying 

solely on process data, the approach avoids detailed modeling requirements and is robust to 

noise and disturbances. It introduces a performance benchmarking metric and an automatic 

retuning mechanism to optimize controller performance. The method's practicality is validated 

through simulations and real-world case studies, demonstrating its effectiveness for industrial 

PID retuning applications 

 

In their paper, J. Park et al. (2020)[16]  present an Arduino microcontroller-based temperature 

control lab (TCLab) as a benchmark for modeling and control methods, emphasizing its 

practical applications in real-world scenarios, including cycle time and discrete sampling 

intervals.  They explore four modeling approaches: a physics-based lumped parameter model, 

a first-order plus dead-time (FOPDT) model, an autoregressive exogenous input (ARX) model, 

and a Hammerstein model with an artificial neural network (ANN).  The paper also showcases 

an optimization technique for PID controller tuning, yielding a 5.4% performance 

improvement.  Additionally, the study compares Model Predictive Control (MPC) using 

different models, highlighting the relative strengths and weaknesses.  The TCLab’s widespread 

use in educational and industrial settings, with over 3000 units distributed, underscores its 

value as a practical learning tool for process control. 

 



Coutinho et al., (2023)[11] published a novel methodology for automatic tuning of multi-loop 

PID controllers using Bayesian Optimization (BO).  It highlights BO as an efficient, data-

driven global optimization method, particularly effective for PID controllers in Multi-Input 

Multi-Output (MIMO) processes.  A systematic approach defines the optimization domain by 

integrating sequential loop closing, system identification, and model-based tuning relations.  

Each loop is tuned sequentially, starting with the fastest, to ensure closed-loop stability and 

account for process interactions.  Performance is evaluated using Integrated Absolute Error 

(IAE) and Total Variation (TV) of the controller output, balancing tracking performance and 

control effort.  The methodology, tested on a non-linear evaporator process, demonstrates 

significant performance improvements over traditional tuning methods. Future research 

suggestions include enhancing BO scalability, reducing online experimental costs, and 

incorporating robustness measures. This approach enhances the efficiency and safety of PID 

controller tuning without requiring extensive prior knowledge or detailed MIMO process 

models. 

 

Munaro et al., (2023)[10] presented a data-driven methodology for performance assessment 

and retuning of PID controllers. It uses set-point response data to compute the Integral of 

Absolute Error (IAE) and applies statistical tests to monitor performance. If performance 

degrades, new controller gains are estimated using closed-loop data and a reference model. 

Tested on pilot plants with flow, level, and pressure loops, this methodology handles noisy 

environments and various set-point changes effectively. Performance monitoring is done via 

normalized IAE values using an exponentially weighted moving average (EWMA) control 

chart, with performance degradation triggering retuning. New parameters are estimated using 

the Optimal Controller Identification (OCI) method, validated through statistical tests. The 

approach is robust, entirely data-driven, and does not require a process model, making it 



applicable to a wide range of industrial control loops. The methodology is validated through 

pilot plant applications, demonstrating its effectiveness in recovering performance and 

handling practical aspects. 

 

3. Retuning Methods 

 

Rule-based PID tuning methods can be divided into two categories: (1) process model from 

open or closed loop data and (2) closed-loop frequency and gain response analysis.  Most of 

the open-loop tuning rules and many of the closed-loop tuning rules derive the PID tuning 

parameters by referring to a process model that is first order or second order plus dead time 

model (FOPDT or SOPDT).  In this case, the performance of the PID tuning is highly 

dependent on the process identification result.  However, breaking the control loop might not 

be welcomed in a real operation and the process identification from the closed-loop data may 

not be as accurate as the open-loop identification. 

 

There are methods in the second category that refer to the frequency response of the closed-

loop data instead of constructing a closed-form process model.  Zeigler-Nichols closed-loop tuning 

requires sustained oscillation data to obtain an ultimate gain (Ku) and ultimate period (Pu) S. 

Skogestad (2023)[17].  To avoid driving a process to the limitation of the stability region to 

obtain the sustained oscillation data, a relay method is introduced by A. Patel et al. [18]  .  

Shamsuzzoha and Skogestad (2020)[2] proposed the SIMC tuning method using closed-loop 

overshoot response data. 

 

 

 



4. Methodology  

A novel and straightforward brute-force sample-based search methodology is described to 

retune a PID controller using closed-loop feedback operating data for both self-regulating and 

integrating types of processes.  The methodology is general and formulated for single-input 

and single-output (SISO) feedback control systems.  The retuning is performed in an offline 

environment using closed-loop simulation with the ARX model and technically does not 

require any special interventions or testing to be performed on the physical system or plant.  

The brute-force sample-based search simply steps through the PID settings (𝐾𝑝, 𝑇𝑖, 𝑇𝑑) 

respectively beginning from a lower bound and ending at its existing or default PID setting and 

then starting from its existing PID setting and ending at its upper bound where the total number 

of steps for each PID setting calculated by the formula below specific to 𝐾𝑝′ as an example: 

 

𝐼𝑁𝑇 (
𝐾𝑝′ − 𝐿

𝑆𝐿
) + 1 + 𝐼𝑁𝑇 (

𝑈 − 𝐾𝑝′

𝑆𝑈
) + 1 

 

This formula represents the total number of steps required to iterate, traverse or loop from a 

user-specified lower (L) bound via its default PID setting to its upper (U) bound with a lower 

and upper related step-size (SL and SU) and then adding one (1) to account for the starting 

values. 

 

This paper discusses the closed loop PID retuning by demonstrating its capability to handle 

various processes characteristics i.e., flow, temperature, pressure and level.  The methodology 

consists of two main components: closed-loop process identification and offline brute-force 

search for PID tuning parameters. The summarized step by step procedure and corresponding 

block diagram are presented below and the detailed descriptions are shown in following 

sections: 



1. A SPO data file with the data-vector names of “sp”, “pv” and “op” in any order including 

both training and testing data sets aligned one after the other. A PID file containing the 

default PID settings, their lower and upper bounds and step sizes as well as the PID equation 

type or form, sampling period duration and lower and upper bounds for the process input 

and output respectively. 

2. A SISO ARX model is identified and estimated for its dynamic model structure (m, n, k) 

and parameters (a1..am and b0..bn). 

3. Identification and estimation are performed to find the best candidate SISO ARX model 

given its output denominator degree (m), input numerator degree (n) and dead-time or time-

delay (k). 

4. Simulate the PID using the pseudo-white noise load disturbance time series representing 

the SISO ARX prediction errors or residuals and the known setpoint, target or reference 

disturbance signals.  The simulated or predicted input and output time -series should 

adequately match the actual input (op, t) and output (pv, t) time series. 

5. Retune the PID controller via a brute-force grid search to find the best tuning by minimizing 

the 1-, 2- or oo-norm of the output errors (sp,t – pv,t) subject to an upper limit on its 1-, 2- 

or oo-norm of the input-move-errors (op, top,t-1) for self-regulating processes.  For 

integrating processes, we minimize the 1-, 2- or oo-norm of (op,t – op,t-1) subject to an 

upper limit on the 1-, 2- or oo-norm of (sp,t – pv,t). 

 



Figure 1.  Block Diagram of PID-Controlled SISO ARX Process Model with Disturbances. 

 

And interestingly, even though the single-input and single output linear dynamic process model 

is most likely structurally over-parameterized, the phenomenon of self-regularization helps to 

inherently prevent over-fitting Du et. al. (2022) [19].  That is, redundant parameters tend to 

converge to zero (0.0) as more data becomes available and the remaining parameters tend to 

converge to their true low-order system parameter or coefficient values without the 

requirement for explicit parameter regularization via 1- (absolute, Manhattan) or 2- (squared, 

Euclidean) norm penalty-errors or -elastic (artificial) variables. 

 

4.1 PID Equations 

 

There are many derivations of the PID formula rooted in the original continuous equation 

detailed in Aström and Hägglund (1995)[20] .  For implementing PID controllers in modern 

digital control platforms such as DCSs (Distributed Control Systems) or PLC (Programmable 

Logic Controllers), two popular discrete forms are widely used in industry.  One is the positional 



form (Equation 1) and the other is the velocity form (Equation 2), which are interchangeable 

if the controller output or process input do not exceed their lower and upper bounds. 

𝑂𝑃𝑡  =  𝑂𝑃𝑏𝑖𝑎𝑠  +  𝐾𝑝[𝑂𝐸𝑡  +
𝛥𝑡

𝜏𝐼
∑ 𝑂𝐸𝑡

𝑡
1  + 𝜏𝐷

𝑂𝐸𝑡−1−𝑂𝐸𝑡

𝛥𝑡
]                                                             (1) 

𝑂𝑃𝑡  =  𝑂𝑃𝑡−1  +  𝐾𝑝[(𝑂𝐸𝑡  − 𝑂𝐸𝑡−1)  +  
𝛥𝑡

𝜏𝐼
𝑂𝐸𝑡  +  

𝜏𝐷

𝛥𝑡
(𝑂𝐸𝑡  −  2𝑂𝐸𝑡−1  +  𝑂𝐸𝑡−2 )]           (2) 

where, 𝑂𝐸𝑡 = 𝑆𝑃𝑡 −  𝑃𝑉𝑡 and is the output error. 

Whereas the positional form calculates the controller output position (𝑂𝑃), the velocity form 

calculates the change in controller output (𝛥𝑂𝑃).  Although the positional form is more 

straightforward to understand as its P, I, and D terms are directly translated from its original 

continuous form, the velocity form has several advantages from the convenience perspective 

such as no additional logic is required for anti-reset windup as reported in Ljung (1999)[21].   

 

In addition to the choice of the positional and the velocity form, there is another popular 

derivation regarding the derivative kick that appears on the derivative terms in the PID equation 

where it is also possible to replace  𝑂𝐸 in the derivative term with the 𝑃𝑉.  This modification 

can reduce the chance of abrupt increments in the controller output when setpoint changes are 

made. However, in this study, the velocity form without the derivative kick-free form is used 

i.e., Equation 2 only. 

 

4.2 Closed-Loop Identification and Estimation 

The success of various PID tuning algorithms strongly relies on the accuracy of the process 

model.  Notably, the IMC-based tuning rules directly calculate the P, I, and D tuning parameters 

using the equations as a function of the process model (K, τ and θ).  Additionally, this tuning rule 

requires an approximation of the process model to be of the first or second order plus dead time 

(FOPDT or SOPDT) form whereas this proposed method is agnostic to both the process and 



controller model forms.  Furthermore, the accuracy of the process model can always be worse in 

closed-loop identification than in open-loop identification.  Thus, these tuning rules might be 

overly sensitive to the result of process model identification.  The proposed method minimizes 

the chances of losing process information by using any type of higher-order process model 

directly without requiring any additional approximation to the first-order process model.  In 

addition, this newly proposed method uses closed-loop routine operating data (with feedback) 

and may fit ARX process models (Eqn 3) although Box-Jenkins models may also be used.  Both 

ARX and Box-Jenkins models have proven consistency in closed-loop identification Flehmig 

et at. (2008); Voda et al. (1994); Jahanshahi and Skogestad  (2013)[22-24].  The ARX form is: 

 

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 + ⋯ + 𝑎𝑚𝑦𝑡−𝑚 + 𝑏1𝑢𝑡−1−𝑘 + 𝑏2𝑢𝑡−2−𝑘 + ⋯ + 𝑏𝑛𝑢𝑡−𝑛−𝑘   (3) 

 

where 𝑚 and 𝑛 represent the number of ARX coefficients multiplying the same number of past 

output (𝑦) and input (𝑢) measurements respectively.  The parameter 𝑘 denotes the process time 

delay or dead-time, expressed in sampling intervals, and represents the delay between an input 

change and its observed effect on the output – excluding the inherent sampling delay. 

 

4.3 Replaying Setpoint and Load Disturbance 

The proposed method uses the digital twin of the actual process to iteratively search for the 

optimal PID tuning.  The ARX model identified from the closed-loop data is used as the base 

model of the digital twin.  This identification may be distributed across multiple process models 

with appropriate chances of occurrence for a robust controller performance design, i.e., including 

a family of process models.  The next step is to evaluate the potential PID tunings through the 

digital twin by re-playing the same past setpoint and load disturbance (Equation 4) as in the 

process data with: 



𝑧𝑡  =  𝑦𝑡  −  𝑥𝑡                   (4) 

where, 𝑥𝑡 represents the ARX model output for time-step 𝑡.  This replay of the closed-loop data 

also describes the actual process more accurately. 

 

4.5 Brute-Force Sample-Based Search Method 

To find the optimal PID parameters, a straightforward brute-force sample-based searching 

method is used.  The search method simply scans all the possible PID tuning performances by 

evaluating the range of PID tuning combinations with the process digital twin.  The upper and 

lower bounds of the P, I, and D tuning are set by the user. It can be set based on the current PID 

tuning as a retuning purpose or it can be tested for an unexplored range for an experiment.  The 

computational time of the exhaustive searching method can be longer than the gradient-based 

optimization although it is easily parallelizable as each PID parameter set increment is 

independent from the other PID increments.  However, the computational time is not a 

constraint of the PID controller tuning tasks as opposed to the real-time estimation problem that 

needs to return the solution faster than the pace of real-time. On the contrary, one of the major 

advantages of the exhaustive searching method is that it always guarantees a global minimum 

given the pre-defined search space, unlike the other optimization methods.  By considering the 

goal of PID tuning and the small size of this optimization problem, an exhaustive search has 

minimal computational time.  If computational time were a concern, the exhaustive search could 

also be used as a multi-start method in conjunction with a gradient-based optimizer to quickly 

find local solutions. 

 

Two different types of objective functions may be considered for PID tuning (Equations 5, 6). 

The objective functions are variations of the PID control performance indices known as ISE 

(Integral Squared Error) and IAE (Integral Absolute Error).  The objective function consists of the 



output-error (OE) term which appears in ISE and IAE, and the input movement (IM) term.  The 

optimization solution of ISE combined with input movement (or, rate of change) has been 

analytically derived and investigated in Tchamna and Lee (2018)[25] and is the simplest form 

of move suppression.  These multi-objective functions can be expressed in two different ways.  

One is Archimedean and the other is the lexicographic form (or goal programming), which is 

shown in Equations 5, 6 and Equations 7, 8, respectively. 

 

𝐿2 − 𝑛𝑜𝑟𝑚:    min
𝐾𝑐,𝜏𝐼,𝜏𝐷

𝐽 = ∑ 𝑤𝑂𝐸{𝑆𝑃(𝑡) − 𝑥(𝑡)}2 + 𝑤𝐼𝑀{𝑂𝑃(𝑡) − 𝑂𝑃(𝑡 − 1)}2  (5) 

𝐿1 − 𝑛𝑜𝑟𝑚:   min
𝐾𝑐,𝜏𝐼,𝜏𝐷

𝐽 =  ∑[𝑤𝑂𝐸|𝑆𝑃(𝑡) − 𝑥(𝑡)| +  𝑤𝐼𝑀|𝑂𝑃(𝑡)  −  𝑂𝑃(𝑡 − 1)|]  (6) 

 

where w is the weighting factor for each term in the objective function denoted in the 

subscription (OE and IM). 

 

𝐿2 − 𝑛𝑜𝑟𝑚:       min
𝐾𝑝,𝜏𝐼,𝜏𝐷

𝐽 =   ∑{𝑆𝑃(𝑡) − 𝑥(𝑡)}2        (7) 

                                           Subject to, ∑{𝑂𝑃(𝑡) − 𝑂𝑃(𝑡 − 1)}2 <  𝑈𝐵𝐼𝑀 

𝐿1 − 𝑛𝑜𝑟𝑚:       min
𝐾𝑝,𝜏𝐼,𝜏𝐷

𝐽 =   ∑ |𝑆𝑃(𝑡) − 𝑥(𝑡)|     (8) 

      Subject to, ∑ |𝑂𝑃(𝑡)  −  𝑂𝑃(𝑡 − 1)|  <  𝑈𝐵𝐼𝑀 

where 𝑈𝐵 is the upper bound of the input movement (IM) which may be initially set by the 

centroid PID performance. 

 



Either the Archimedean or lexicographic form of the objective function can be used for PID 

controller tuning. In terms of convenience, the lexicographic form is easier to use because it 

requires one user input parameter, 𝑈𝐵𝐼𝑀, as opposed to the Archimedean form that requires 

two weighting factors on both 𝑂𝐸 and 𝐼𝑀 terms. 

 

5. Results  

In this section, we examine two distinct pilot plants that include flow, pressure, and temperature 

loops operating in semi stable condition. The proposed methodology is assessed for each 

scenario, considering several practical considerations. To provide a concise comparison across 

all case studies, Table 1 summarizes the default and retuned PID controller performance 

metrics. The table reports the standardized output-error and input-move-error norms before and 

after retuning, along with the relative percentage improvement in output-error. This overview 

highlights the consistent improvements achieved by the proposed retuning method across self-

regulating and integrating processes. 

Table 1. Summary of default and retuned PID performance across self-regulating case studies. 

 

Case Study Actual 

Default 

OEnorm 

Actual 

Default 

IMEnorm 

Actual 

Best 

OEnorm 

Actual 

Best 

IMEnorm 

Improvement 

OEnorm (%) 

PCT40 Flow PID  

 

0.836162 0.010304 0.635537 0.004712 28% ↓   

PCT40 Pressure PID 1.139950 0.034072 0.728248 0.062497 26% ↓ 

PCT40 Temperature PID 0.168450 0.023042 0.123598 0.053948 30% ↓ 

TCLab Temperature PID  1.826942 3.891286 1.521849 1.445109 16.7 ↓ 

 

5.1 Experimental Case Studies 

In the field of process control education there several popular experimental devices and we 

have chosen Armfield Limited’s multi-function process control teaching system called PCT40 

described in Armfield (2005)[26] and the Temperature Control Laboratory (TCLab) found in 



Oliveira and Hedengren (2019)[27] from Brigham Young University which are well-known 

resources that facilitate hands-on learning.  Both systems provide practical tools for students 

as well as engineers to engage with and understand basic and advanced process control 

techniques.  The PCT40 is used for self-regulating flow, pressure and temperature PID control 

and the TCLab is used for self-regulating temperature PID control only.  The integrating level 

PID control case study is a virtual simulation of pump-drained surge vessel as no physical 

system was available. 

 

5.2 Flow PID Control with PCT40 

The Armfield PCT40 flow control process measures water flow in millilitres per minute 

(ml/min) using a proportional turbine sensor and adjusts or actuates the speed of a peristaltic 

pump expressed as a percentage (%) where the supply of water is from the city municipality. 

This experiment features a sampling interval, cycle time or time-period duration of 0.5 seconds, 

a default proportional band of 75, and a default integral time (𝑇𝑖) of 15 seconds. Notably, no 

derivative action was applied, which is common practice for flow PID controllers as they have 

fast dynamics.  The default proportional band translates into a default controller gain of 

0.044444 via the following formula incorporating the appropriate actuator and sensor scalings 

i.e., 𝐾𝑝 = 100 / (75 / 100) / (1500 - (-1500)) = 0.044444. 

 

In figure 2a we plot the actual default PID controller’s closed-loop system behavior with twelve 

(12) setpoint step-changes trending the setpoint (SP), process variable (PV) and controller 

output (OP) responses for a total of 4,383 time-periods with a 0.5 second time-period duration 

as mentioned.  The standardized L2-norm of the output-error (SP,t – PV,t) is 0.836162 and 

0.010304 for the standardized 2-norm input-move-error (OP,t – OP,t-1).  Figure 2b is the 

simulated version of this plot with the default PID tuning parameters and simulating after fitting 



an over-parameterized SISO ARX dynamic model with a five (m = 5) degree or order output 

lag, four (n = 4) degree input lag and a one (k = 1) degree of dead-time corresponding to a 

single 0.5 second time-delay which aligns with the input-output model that has the smallest or 

minimum sum-of-squares of errors (SSE) i.e., sum of (y,t – yp,t)^2 where y,t = PV,t and yp,t is 

the model prediction.  The simulated standardized L2-norm output-error and input-move-error 

are 0.845907 and 0.010274 respectively which match very closely to the L2-norm errors found 

in figure 2a validating the SISO ARX model. 

 

Figure 2.  PCT40 Flow PID Retuning Plots. 

 

Figure 2c trends the simulation of the closed-loop system using the SISO ARX model identified 

and estimated from the data in figure 2a with the best PID controller settings or parameters 

determined by our PID retuning methodology which are 𝐾𝑝 = 0.01 = 100 / (333.333333 / 100) 

/ (1500.0 - (-1500.0)) and 𝑇𝑖 = 0.8 seconds.  The standardized 2-norm input-move-error upper 

limit for the retuning is chosen to be one-half of the actual standardized 2-norm IME of 

approximately 0.005 i.e., ~ 0.010304 / 2.  The standardized 2-norm of the output-error (SP,t – 

PV,t) is 0.596545 and 0.004725 for the standardized 2-norm input-move-error (OP,t – OP,t-1) 

which shows a close agreement with the chosen input-move-error upper limit and has decreased 



the output-error by almost 29% i.e., (0.836162 - 0.596545) / 0.836162 * 100 even though we 

have reduced the input-move-error variation by over 100%.  Figure 2d validates these results 

when the PCT40 closed-loop experiment is repeated less than two-hours after the first closed-

loop experiment is performed for figure 2a.  The standardized 2-norm output- and input-move-

error are 0.635537 and 0.004712 respectively.  These 2-norm results are similar to those 

anticipated from figure 2c except that the reduction in the output-error variation seems to be 

somewhat over-predicted which can be expected as the time of day is different and the demand 

for city water can fluctuates causing upstream pressure swings, disturbances, uncertainty, etc. 

 

5.3 Pressure PID Control with PCT40 

The Armfield PCT40 pressure control process measures the internal pressure of a sealed-vessel 

in mmHg and utilizes a variable speed positive displacement gear pump (%) to drive the 

pressurized flow of water upstream of the supplied water.  The water discharge passes through 

a smaller diameter hole or orifice before eventually draining at atmospheric pressure into the 

sewer line. A piezoelectric pressure sensor located upstream of the orifice and the pump is 

controlled by a default PID controller with the settings of a 5-second cycle time or execution 

interval, a proportional band (PB) of 200.0, and an integral or reset time (𝑇𝑖) of 15 seconds. 

No derivative action is necessary as this is a relatively fast process loop and is similar to flow 

control loops.  The default proportional band translates into a default proportional gain of 

0.0625 via the following equation: 𝐾𝑝 = 100 / (200 / 100) / (400 - (-400)). 

 

In Figure 3a, we illustrate the behavior of the default PID controller’s closed-loop system. This 

includes twelve (12) setpoint step-changes, showing the trends for the setpoint (SP), process 

variable (PV), and controller output (OP) responses over a total of 723 time periods, each 

lasting 5.0 seconds. The standardized 2-norm of the output error between the setpoint and 



process variable (SP,t – PV,t) is 1.112204, while the standardized 2-norm of the output error 

between consecutive controller outputs (OP,t – OP,t-1) is 0.038826. Figure 3b presents the 

simulated version of the system using the default PID tuning parameters. This simulation was 

conducted after fitting an over-parameterized SISO ARX dynamic model, which includes a 

five-degree (m = 5) output lag, a four-degree (n = 4) input lag, and a one-degree (k = 1) dead-

time corresponding to a 5.0 second time delay. This model aligns with the input-output model 

that has the smallest sum-of-squares of errors (SSE) calculated as the sum of (y,t – yp,t)^2 

identical to the flow control example. The simulated standardized 2-norm output error and 

input move error are 1.139950 and 0.034072, respectively, closely matching the 2-norm errors 

found in Figure 3a thereby validating the SISO ARX model. 

 

Figure 3.  PCT40 Pressure PID Retuning Plots. 

 

Figure 3c shows the simulation of the closed-loop system using the SISO ARX model, which 

was identified and estimated from the data in Figure 3a.  The best PID controller settings were 

determined by our PID retuning methodology where 𝐾𝑝 = 0.1125 = 100 / (111.1 / 100) / (400 - 

(-400)) and 𝑇𝑖 = 10.1 seconds.  For the retuning, the standardized 2-norm input-move-error (IME) 

upper limit was set to approximately double the actual standardized 2-norm IME of 0.07 (i.e., 



~ 2 * 0.038826).  The standardized 2-norm of the output-error (SP,t - PV,t) is 0.818852 and 

0.0656251 for the standardized 2-norm input-move-error (OP,t - OP,t-1) which shows a close 

agreement with the chosen input-move-error upper limit and has decreased the output-error by 

at least 26% i.e., (1.112205 - 0.818852) / 1.112205 * 100 which is expected as we have 

increased the input-move-error variation by circa 100%.  Figure 3d validates these results when 

the PCT40 closed-loop experiment is repeated less than two-hours after the first closed-loop 

experiment is performed for figure 3a.  The standardized 2-norm output- and input-move-error 

are 0.728248 and 0.062497 respectively.  These 2-norm results are similar and consistent to 

those anticipated from figure 3c except that the reduction in the output-error variation seems 

to be somewhat under-predicted which can be expected as the time of day is different and the 

demand for city water can fluctuates causing upstream pressure swings, disturbances, 

uncertainty, etc. 

 

5.4 Temperature PID Control with PCT40 

The Armfield PCT40 apparatus for our temperature control loop heats water in a vessel where 

water enters from the bottom and exits as an overflow at the top as an overflow.  The inflow of 

water is regulated by a pressure regulator and a proportional solenoid valve (PSV) set at 50%.  

A type K temperature sensor is positioned near the top-middle of the vessel and a 2 KW heating 

element actuated by a solid-state relay (SSR).  The heating element operates with time-

proportioned or pulse width modulation (PWM) on a 10 second cycle time via the SSR. 

 

A sampling interval of 10 seconds, a proportional band (PB) of 75, and an integral time (𝑇𝑖) of 

30 seconds were used in the first experiment, with no derivative action due to minimal process 

dead time. The experiment began with a setpoint of 40°C, and the setpoint was nominally 

perturbed every 15 minutes varying between 30°C and 50°C.  The default proportional band 



corresponds to a default gain of 0.333333, which is calculated using the formula 𝐾𝑝 = 100 / 

(75 / 100) / (200 - (-200)) considering the appropriate scaling for both the actuator and sensor. 

 

Figure 4.  PCT40 Temperature PID Retuning Plots. 

 

In figure 4a we plot the actual default PID controller’s closed-loop system behavior with twelve 

(12) setpoint step-changes trending the setpoint (SP), process variable (PV) and controller 

output (OP) responses for a total of 1108 time-periods with a 10 second time-period duration 

as mentioned.  The standardized 2-norm of the output-error (SP,t - PV,t) is 0.168450 and 

0.023042 for the standardized 2-norm input-move-error (OP,t - OP,t-1).  Figure 4b is the 

simulated version of this plot with the default PID tuning parameters and simulating after fitting 

an over-parameterized SISO ARX dynamic model with a five (m = 5) degree or order output 

lag, four (n = 4) degree input lag and a three (k = 3) degree of dead-time corresponding to a 30 

seconds of time-delay which aligns with the input-output model that has the smallest or 

minimum sum-of-squares of errors (SSE) i.e., sum of (y,t - yp,t)^2.  The simulated standardized 

2-norm output-error and input-move-error are 0.166949 and 0.025011 respectively which 

closely matches the 2-norm errors found in figure 4a validating the SISO ARX model. 



Figure 4c shows the simulation of the closed-loop system using the SISO ARX model which 

was identified and estimated from the data in Figure 4a.  The best PID controller settings were 

determined by our PID retuning methodology yielding the following best PID settings of 𝐾𝑝 = 

0.3125 = 100 / (80 / 100) / (200 - (-200)) and 𝑇𝑖 = 7.1 seconds.  For the retuning, the standardized 

2-norm input-move-error (IME) upper limit was set to double of the actual standardized 2-

norm IME, approximately 0.05 (i.e., ~2 * 0.023042).  The standardized 2-norm of the output-

error (SP,t - PV,t) is 0.118537 and 0.051203 for the standardized 2-norm input-move-error (OP,t 

- OP,t-1) which shows a close agreement with the chosen input-move-error upper limit and has 

decreased the output-error by at least 29% (i.e.,( 0.168450 – 0.118537) / 0. 168450 * 100) even 

though we have increased the input-move-error variation by over 100%.  Figure 4d validates 

these results when the PCT40 closed-loop experiment is repeated less than two-hours after the 

first closed-loop experiment is performed for figure 4a.  The standardized 2-norm output- and 

input-move-error are 0.123598 and 0.053948 respectively.  These 2-norm results are quite 

similar to those anticipated from figure 4c. 

 

5.5 Temperature PID Control with TCLab 

 

The Arduino-based Temperature Control Lab (TCLab) comprises two sets of heaters, 

transistors, and a temperature sensor that collectively form the control process. The heaters act 

as the process generating heat while the transistors serve as actuators controlling the power 

supplied to the heaters. The temperature sensor functions as the measurement device providing 

real-time feedback on the temperature of the system. Together, these components enable 

sufficient control of the temperature within the lab environment showcasing a closed-loop 

control system where the sensor feedback is used to adjust the actuator output and maintain the 

desired temperature setpoint Park et al. (2019)[28].  The experiment began with a setpoint of 



40°C, and the setpoint was nominally and automatically perturbed between 5 to 20 minutes as 

shown varying between 30°C and 50°C. 

 

In figure 4a we plot the actual default PID controller’s closed-loop system behavior with nine 

(9) setpoint step-changes trending the setpoint (SP), process variable (PV) and controller output 

(OP) responses for a total of 530 time-periods with a 10 second time-period duration or 

sampling interval and the default PID settings of 𝐾𝑝 = 10.0 and 𝑇𝑖 = 50 seconds with no 

derivative or anticipatory action (Td = 0.0).  The standardized 1-norm of the output-error (SP,t 

- PV,t) is 1.826942 and 3.891286 for the standardized 1-norm input-move-error (OP,t - OP,t-1).  

Figure 4b is the simulated version of this plot with the default PID tuning parameters and 

simulating after fitting an over-parameterized SISO ARX dynamic model with a five (m = 5) 

degree or order output lag, four (n = 4) degree input lag and two (k = 2) degrees of dead-time 

corresponding to 20 seconds of time-delay which aligns with the input-output model that has 

the smallest or minimum sum-of-squares of errors (SSE) i.e., sum of (y,t – yp,t)^2.  The 

simulated standardized 1-norm output-error and input-move-error are 1.838361 and 4.021016 

respectively which sufficiently matches the 1-norm errors found in figure 4a validating the 

SISO ARX model. 

 



Figure 4.  TCLab Temperature PID Retuning Plots. 

Figure 4c shows the simulation of the closed-loop system using the SISO ARX model which 

was identified and estimated from the data in Figure 4a. The best PID controller settings were 

determined by our PID retuning methodology as 𝐾𝑝 = 4.6 and 𝑇𝑖 = 115 seconds.  For the 

retuning, the standardized 1-norm input-move-error (IME) upper limit was set to circa one half 

of the actual standardized 1-norm IME of 1.95 (i.e., ~ 3.891286 / 2).  The standardized 1-norm 

of the output-error (SP,t - PV,t) is 1.742377 and 1.601218 for the standardized 1-norm input-

move-error (OP,t - OP,t-1) which shows relatively close agreement with the chosen input-

move-error upper limit and has slightly decreased the output-error by almost 5% i.e., (1.826942 

- 1.742377) / 1.826942 * 100 even though we have decreased the input-move-error variation 

by over 100%.  Figure 4d validates these results when the TCLab closed-loop experiment is 

repeated less than two-hours after the first closed-loop experiment is performed for figure 4a.  

The standardized 1-norm output- and input-move-error are 1.521849 and 1.445109 

respectively.  These 2-norm results are similar to those anticipated from figure 4c except that 

the further reduction in the output-error variation seems to be somewhat under-predicted but 

obviously in the same direction of improvement as expected by the best simulated PID results. 

 

5.6 Level PI Control of Surge Drum with Closed-Loop Dynamic Simulation 

 

In this closed-loop dynamic simulation, a simple horizontal surge drum process system with 

water as its fluid is designed to regulate its liquid level or holdup ℎ𝑡 under feedback control 

with a pump-drained outlet flow as shown in Figure 5.  The flowsheet configuration is taken 

from Kelly (1998)[29] and the first principles modeling and parameters are provided by Jang 

(2016)[30] but altered with a pump-drained outlet flow with a separate flow control loop 

instead of being gravity-drained and thus requiring no details on the level control valve.  The 



inlet flow qi
t enters at the top and for this dynamic simulation is used as a random walk load 

disturbance i.e., integrating white noise as discussed in Kelly (1998)[29].  The outlet flow’s 

𝑞𝑜
𝑡
 is under perfect flow control (FC) with its setpoint cascaded from the PI level controller’s 

(LC) output as shown.  Proper tuning of the LC involves setting the appropriate proportional 

gain (𝐾𝑝) and integral or reset time (𝑇𝑖) settings to achieve what is known as “level flow 

smoothing” or “averaging level control”.  The closed-loop feedback dynamic simulation is 

programmed in IMPL-DATA© from Industrial Algorithms Limited as an Intel Fortran user-

coded external data function combining the process system equations discretized and integrated 

via the implicit or forward Euler’s method with the classic PI equations in velocity-form where 

the output-error is used in both PI terms known as “Equation A”.  This dynamically simulated 

system is referred to as the actual system or apparatus which in reality is a digital twin or cyber-

physical representation in lieu of a true physical system.   
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Figure 5.  Dynamically Simulated PI Level Controlled Surge Drum Apparatus 

 

As previously discussed, our methodology involves estimating the process dynamics via SISO 

ARX, however for integrating processes such as this we follow the technique from Kelly 

(1998)[29] which single differences the process input (∇q𝑜𝑡) and double differences the 

process output (∇2ht).  By itself, we only need to estimate the process gain and dead-time as 



the process dynamics are already known due to the integrating nature of the process.  The 

process gain is then theoretically equal to the sampling-interval or scan- or time-period duration 

divided by the cross-sectional area of the horizontal vessel and negative as the process input is 

the outlet flow i.e., an increase in the flow out decreases the drum holdup where the process 

flows are in flowrate unit-of measure e.g., m3/s.  The process delay is identified by 

straightforwardly estimating multiple SISO ARX model fits and selecting the one with the least 

sum-of-squares of residuals or errors (SSE) or largest coefficient of determination (R2) for 

example also discussed in Kelly (1998)[29]. 

 

For this example, the horizontal surge drum cross-sectional area is 0.1 m2, the level has a 

steady-state of 1.0 m and a minimum and maximum of 0.0 and 2.0 m.  The steady-state outlet 

flow and inlet flow is 0.001 m3/s and its minimum and maximum are 0.0 and 0.002 m3/s.  The 

default PI level controller has a proportional gain of -1.5 and an integral time of 1,200 seconds 

where the PI level controller was run, cycled or executed every 10.0 seconds and the total time-

profile for the closed-loop dynamic simulation is 5,000 sampling-instants or 50,000 seconds.  

The inlet flow random walk load disturbance’s white noise sequence generator uses an arbitrary 

random seed and a standard-deviation of 10% of the inlet flow’s steady-state i.e., 0.1 * 0.001 

= 0.0001 m3/s as specified by Jang (2016)[30].  The SISO ARX with the least SSE identified 

and estimated has a dead-time of 10.0 seconds corresponding to a single scan-interval or 

simulation time-period and the process gain estimate is -0.209 based on the level controller’s 

fractional and dimensionless output response which varies from 0.0 to 1.0.  Converting this to 

physical unit-of-measures, the actual process gain is -0.209 / (0.002 – 0.000) = -104.5 s/m2 

which closely approximates the theoretical value of -10.0 / 0.1 m2 = -100.0 s/m2. 

 



The first sub-plot Figure 6a displays the simulated actual closed-loop response using the 

dynamic simulation apparatus with the default PI settings and no setpoint changes, 

perturbations, dithering nor disturbances.  The second sub-plot Figure 6b shows the simulated 

version using the SISO ARX model, the same default PI level controller and replaying back 

the same load disturbance derived from the simulated actual minus the predicted level or 

holdup response i.e., the regression residuals form the SISO ARX fit.  As can be observed the 

two sub-plots are in close agreement indicating that the SISO ARX model seems representative.  

The third sub-plot Figure 6c presents the best PI level retuning results where the retuning has 

-0.2 for the controller gain (𝐾𝑝) and 10,000 (𝑇𝑖) seconds which is essentially a proportional-

only controller as seen by the large swings or deviations in the process output response 

absorbed by the excess holdup capacity in the surge drum as expected which ultimately reduces 

the variation in the outlet flow consistent with the notion or concept of level flow smoothing 

or averaging level control.  The simulated best sub-plot is the last sub-plot for Figure 6d and is 

virtually the same as the third as anticipated.  The reason for the very close agreement is due 

to the fact that the pump-driven outlet flow translates into a linear ordinary differential equation 

(ODE) for the process whereas a gravity-driven outlet flow would yield a nonlinear ODE given 

that the outlet flow would be a function of the square-root of the height or level.  Since the 

SISO ARX model is only a linear dynamic approximation to the real process system, the 

process model identification and estimation is thus more accurate. 

 



 

Figure 6.  Level PI Controller Retuning Plots with Level Upper Limit of 2.0 m. 

 

In Figure 7 we restrict the large variations in the holdup response that vary from 0.0 to 1.5 m 

instead of 2.0 m inside our PID retuning technique which simply excludes all internally 

generated PID simulation scenario or situation results which violate at any time-instant within 

the retuning feedback simulation time-horizon or -profile level values that are greater than 1.5 

m and less than 0.0 m.  The new best tuning PI settings are now -0.2 and 1,850 seconds where 

it is clearly demonstrated that the previous deviation of 1.8 m found in the fourth sub-plot of 

Figure 6 is now attenuated to less than or equal to 1.5 m by reducing the reset or integral time 

allowing for quicker adjustment of the outlet flow. 

 



 

Figure 7.  Level PI Controller Retuning Plots with Level Upper Limit of 1.5 m. 

 

5. Discussions  

The experimental results presented in this study demonstrate the effectiveness of the proposed 

sample-based retuning method for PID controllers. The key findings and their implications are 

discussed below. 

 

5.1 Performance Evaluation 

The method showed reliable performance across different pilot plants, specifically in flow, 

pressure, and temperature control loops. The retuning process effectively minimized the 

integrated squared error (ISE) and mitigated the rate of change, which are crucial for 

maintaining stability in industrial processes. The exhaustive search method applied in this 

study provided a straightforward approach that can be easily implemented in real-world 

operations using digital twin simulations and optimizations. 

 

 



5.2 Comparison with Existing Methods 

Unlike traditional gradient-based optimization techniques, which can often stall at local 

minima due to the non-convex nature of the problem, our brute-force search method 

demonstrated robust global minimum searching capabilities. This is particularly important for 

processes with complex dynamics where local optimization methods may fail to give optimal 

tuning parameters. The higher accuracy achieved in PID tuning using the exact same sequences 

of setpoint changes and load disturbances during process model evaluation highlights the 

superiority of our method over conventional approaches. 

 

5.3 Practical Implications 

Implementing the proposed retuning method in industrial settings can lead to significant 

improvements in process control. By utilizing closed-loop feedback data and digital twin 

simulations, operators can retune PID parameters more accurately and efficiently. This method 

also allows for the replay of past setpoint and load disturbances, considering residuals of 

estimation as unmeasured load disturbances, thus providing a more comprehensive evaluation 

of the controller performance under various operational conditions. 

 

5.4 Limitations and Future Work 

While the results are promising, the method's reliance on extensive computational resources 

for brute-force search may pose a challenge in environments with limited computational 

capabilities. Future research should focus on optimizing the search algorithm to reduce 

computational overhead without compromising accuracy. Additionally, further validation of 

the method across a wider range of industrial processes and conditions will be essential to 

generalize its applicability. In summary, the sample-based retuning method for PID controllers 



presented in this study offers a reliable and practical approach for improving process control 

performance. By addressing the limitations of existing methods and leveraging digital twin 

simulations, this approach holds significant potential for enhancing industrial process stability 

and efficiency. 

 

6. Conclusion 

This research presents a robust data-driven methodology for PID controller retuning using a 

brute-force sample-based search applied to surrogate models identified from routine closed-

loop operating data.  By leveraging ARX models within a digital twin framework, the proposed 

approach enables systematic retuning without disrupting operations or requiring open-loop 

testing, which is an advantage for modern industrial environment focused on safety, uptime 

and cost-efficiency. 

 

The method was validated across a diverse set of processes, including flow, pressure, and 

temperature control loops, as we as a simulated integrating level control system.  In all cases, 

the methodology achieved substantial reductions in output-error norms while maintain or 

improving actuator efficiency, confirming its practical viability for both self-regulating and 

integrating process dynamics.  Importantly, the simulation-based approach enables tuning   

decisions to be informed by realistic, process-specific disturbances and setpoint changes, 

enhancing confidence in real-world performance gains. 

 

Compared to traditional gradient-based optimization and heuristic methods, the brute-force 

search technique avoids local minima and reliably finds globally optimal solution within user-

defined bounds. While the computational cost of an exhaustive search remains a consideration, 

this is mitigated by its offline nature and potential for parallel execution.  The method is 



especially valuable in supervisory control architectures where controllers must be tuned or 

retuned periodically in response to process drift, equipment aging, or changing production 

targets. 

 

Future work should explore hybrid optimization schemes that combine the robustness of 

brute-force search with the speed of local gradient-based methods to reduce computational 

load.  Moreover, expanding the method’s application to Multivariable (MIMO) system and 

integrating robustness margins into the tuning objectives would further enhance its industrial 

relevance.  The integration of online monitoring to automatically trigger retuning based on 

model mismatch or performance degradation offers a promising pathway towards fully 

autonomous control loop optimization.  In summary, this methodology offers a scalable and 

reliable path to smarter PID control—bridging the gap between conventional tuning rules and 

modern, data0driven control strategies.  
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