
*.pid & *.spo

The *.pid (PSV) and *.spo CSV (pipe- and comma-separated-value) formatted files are suggested file

types or extensions only and may be inputted, loaded or imported with the include frame’s attribute

DATAFRAME to read PID retuning related data required for the routines SISOARX() and RETUNEPID() as

well as SIMULATEPID() i.e., identification, estimation (estimization), optimization and simulation

(simulization) of the process model and the PID settings respectively. The “pid” data-vector found inside

*.pid must be consistent with the PID data-vector argument required by the RETUNEPID() and

SIMULATEPID() datadata functions where each field may itself be a calc-scalar expression or formula.

The *.spo stands for setpoint variable value (“sp”), process output variable value (“pv”) and controller

output / process input variable value (“op”) related to single-loop proportional, integral (re-set) and

derivative (pre-act) PID controllers where the sp,pv,op tuple of data-sets, -lists or -vectors, with lower

case names only, may be arranged in any order, permutation or sequence and other data-sets, -lists or -

vectors may also be present in the *.spo file such as an integer or real number for the time-stamp, time-

step, time-interval, time-index, time-period (ts, ti, tp), etc.

An example *.pid file in IMPL’s pipe-separated-value (PSV) format is provided below with symbols and

nomenclature description for more clarity on its configuration.

pid, Kp | KpL | KpLs | KpU | KpUs |

 , Ti | TiL | TiLs | TiU | TiUs |

 , Td | TdL | TdLs | TdU | TdUs |

 , Ts |

 , PIDeq |

 , opL | opU |

 , pvL | pvU |

 , Unt | Unl |

 , mL | mU |

 , nL | nU |

 , kL | kU |

The Kp, KpL, KpLs, KpU and KpUs are the proportional gain, proportional gain lower bound plus step-

size and proportional gain upper bound plus step-size where Kp acts as the center-point or centroid for

the brute-force or grid search inside the RETUNREPID() datadata function i.e., KpL <= Kp <= KpU.

Similarly, Ti, etc. and Td, etc. are the integral-time and derivative-time with lower, upper and steps /

strides. The Ts represents the sampling- or scan-interval time and must be in the same time unit-of-

measure as Ti and Td. The PIDeq currently supports the three well-known PID equation types A = 0,

B = 1 and C = 2 as described further below. The opL, opU, pvL and pvU are the lower and upper

bounds for the process input or controller output (op) and process output (pv). The Unt and Unl are

the upper norm type (1, 2 or 3 for infinity) and the upper norm limit required by RETUNEPID() to

constrain the controller output, manipulated variable or process input minus its previous or immediate

past value (i.e., input-move-error) variance for self-regulating processes (stable) whereby the setpoint

(reference or target) minus its process output (i.e., output-error) is minimized. And if negative (-ve),

then the output-error variance is constrained instead for integrating processes (marginally stable)

whereby the input-move-error variance is minimized known as “level-flow smoothing” (LFS)) or

“averaging level control” (ALC) and typically employed for buffer or surge vessel “loose” versus “tight”

level or volume control loops – see also the NORMOE() and NORMIME() datacalc functions. It should

also be mentioned that even for self-regulating processes, the upper norm limit (Unl) may also be

negative (-ve) whereby the input-move-error variance norm is minimized and is constrained or subject

to the output-error norm upper limit implying “loose” versus “tight” control performance for the self-

regulating process under PID feedback control.

The mL, mU, nL, nU, kL and kU are the lower and upper degree bounds for the brute-force or grid

search performed with the SISOARX() datadata function in order to determine the best numerator (m),

denominator (n) and dead-time / time-delay (k) ARX (Auto-Regressive eXogenous) linear parametric

dynamic (transfer function) model for the process from closed- and/or open-loop operating data found

in the *.spo file. Interestingly, even though the single-input and single-output linear dynamic process

model is most likely structurally over-parameterized (i.e., estimate, fit or learn more parameters than

necessary), the phenomenon of self-regularization helps to inherently prevent over-fitting. That is,

redundant parameters tend to converge to zero (0.0) as more data becomes available and the remaining

parameters tend to converge to their true low-order system parameter or coefficient values without the

requirement for explicit parameter regularization via 1- (absolute, Manhattan) or 2- (squared, Euclidean)

norm penalty-errors or -elastic (artificial) variables cf. Du, Liu, Weitze and Ozay, “Sample complexity

analysis and self-regularization in identification of over-parameterized ARX models”, IEEE 61st

Conference on Decision and Control (CDC), 2022.

In terms of the theoretical number of PID retuning brute-force or grid-search simulations required to be

performed by RETUNEPID(), we can easily calculate this assuming all steps or strides (KpLs, etc.) are

positive (+ve) and non-zero as:

(nKpl + nKpU) * (nTil + nTiU) * (nTdl + nTdU)

where

nKpL = INT((Kp – KpL) / KpLs) + 1,

nKpU = INT((KpU – Kp) / KpUs) + 1,

nTiL = INT((Ti – TiL) / TiLs) + 1,

nTiU = INT((TiU – Ti) / TiUs) + 1,

nTdL = INT((Td – TdL) / TdLs) + 1, and

nTdU = INT((TdU – Td) / TdUs) + 1.

In order to elucidate some guidance and clarity on how to configure the brute-force or grid search for

the PID retuning, suggested values for KpL, KpU, TiL, TiU and TdL, TdU are provided below based

on the default or existing PID parameter settings multiplied by a user, modeler or analyst supplied factor

or multiplier (e.g., 2.0):

KpL = 0.0,

KpU = 2.0 * Kp,

TiL = Ts,

TiU = 2.0 * Ti,

TdL = 0.0, and

TdU = 2.0 * Td.

Suggested step or stride values for KpLs, KpUs, TiLs, TiUs and TdLs, TdUs may be also chosen

using a user, modeler or analyst supplied factor or multiplier (e.g., 0.1 = 10^-1) which is directly

related to the inverse of the suggested number of steps, strides, increments or discrete elements within

its lower and and/or upper bound sub-ranges or -domains (e.g., 10):

KpLs = 0.1 * (Kp – KpL),

KpUs = 0.1 * (KpU – Kp),

TiLs = 0.1 * (Ti – TiL),

TiUs = 0.1 * (TiU – Ti),

TdLs = 0.1 * (Td – TdL), and

TdUs = 0.1 * (TdU – Td).

Therefore, the theoretical number of PID retuning brute-force or grid-search simulations performed by

RETUNEPID() is proportional to the given factors or mulitpliers discussed above.

And for completeness, we provide the three (3) most popular PID equations A, B and C as implemented

in IMPL below in velocity-form where t and t-1 indicate the current / present and the immediate past

/ previous values respectively:

PIDeq = 0 (A)

op,t = op,t-1 + Kp* ((sp,t – pv,t) – (sp,t-1 - pv,t-1)) +

 Kp*Ts/Ti* (sp,t – pv,t) +

 Kp*Td/Ts*((sp,t – pv,t) –

 2*(sp,t-1 - pv,t-1) + (sp,t-2 - pv,t-2))

PIDeq = 1 (B)

op,t = op,t-1 + Kp* ((sp,t – pv,t) – (sp,t-1 - pv,t-1)) +

 Kp*Ts/Ti* (sp,t – pv,t) +

 Kp*Td/Ts* (pv,t – 2*pv,t-1 + pv,t-2)

PIDeq = 2 (C)

op,t = op,t-1 + Kp* (pv,t – pv,t-1) +

 Kp*Ts/Ti*(sp,t – pv,t) +

 Kp*Td/Ts*(pv,t – 2*pv,t-1 + pv,t-2)

Finally, it should be mentioned that the sign of the controller gain Kp may be either positive (+ve) or

negative (-ve) depending on the sign of the process gain where it is important to understand that the

product of the process gain times the controller gain must its be positive (-ve). Or stated more simply,

the sign of the process gain and the sign of the controller gain must be the same i.e., if the process gain is

negative (-ve), then the controller gain (Kp) must also be negative (-ve). This is also related to whether

the actuator or final control element is direct- (DEV) or reverse-acting (REV) whereby a direct-acting

controller increases its output (OP) as the process variable (PV) increases (i.e., they move in the same

direction) and a reverse-acting controller increases its output (OP) as the process variable (PV) decreases

(i.e., they move in opposite directions).

